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LSD  and DOB  induce  a  ketanserin  sensitive  increase  in  shaking  behaviour.
LSD  and DOB  induced  shaking  behaviour  is  undermined  by  tolerance  development.
Tolerance  to  DOB  correlates  with  reduced  frontocortical  5-HT2A binding  sites.
Tolerance  to  LSD  does  not  correlate  with  frontocortical  5-HT2A binding  sites.
Tolerance  to  LSD  correlates  with  reduced  frontocortical  glutamate  binding  sites.
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a  b  s  t  r  a  c  t

Serotonergic  hallucinogens,  such  as  lysergic  acid diethylamide  (LSD)  and  dimethoxy-bromoamphetamine
(DOB),  provoke  stereotype-like  shaking  behaviour  in  rodents,  which  is hypothesised  to engage  fron-
tocortical  glutamate  receptor  activation  secondary  to serotonin2A  (5-HT2A)  related  glutamate  release.
Challenging  this  hypothesis,  we  here  investigate  whether  tolerance  to LSD  and  DOB  correlates  with
frontocortical  adaptations  of  5-HT2A and/or  overall-glutamate  binding  sites.  LSD  and  DOB  (0.025  and
0.25 mg/kg,  i.p.)  induce  a ketanserin-sensitive  (0.5  mg/kg,  i.p.,  30-min  pretreatment)  increase  in shaking
behaviour  (including  head  twitches  and wet  dog shakes),  which  with  repeated  application  (7×  in  4  ds)
is  undermined  by  tolerance.  Tolerance  to DOB,  as indexed  by DOB-sensitive  [3H]spiroperidol  and  DOB
induced  [35S]GTP-gamma-S  binding,  is accompanied  by  a  frontocortical  decrease  in 5-HT2A binding  sites
and  5-HT2 signalling,  respectively;  glutamate-sensitive  [3H]glutamate  binding  sites,  in contrast,  remain
unchanged.  As  to  LSD,  5-HT2 signalling  and  5-HT2A binding,  respectively,  are  not  or  only  marginally
affected,  yet  [3H]glutamate  binding  is significantly  decreased.  Correlation  analysis  interrelates  tolerance
to  DOB to  the  reduced  5-HT2A (r =  .80) as well  as the  unchanged  [3H]glutamate  binding  sites  (r = .84);  tol-
erance  to  LSD,  as opposed,  shares  variance  with  the  reduction  in [3H]glutamate  binding  sites  only  (r  =  .86).

Given  that  DOB  and  LSD  both  induce  tolerance,  one  correlating  with  5-HT2A,  the  other  with  glutamate
receptor  adaptations,  it might  be inferred  that tolerance  can  arise  at either  level.  That  is,  if a  hallucinogen
(like  LSD  in our  study)  fails  to induce  5-HT2A (down-)regulation,  glutamate  receptors  (activated  postsy-
naptic  to 5-HT2A related  glutamate  release)  might  instead  adapt  and  thus  prevent  further  overstimulation
of  the  cortex.

© 2014  Published  by  Elsevier  B.V.
Please cite this article in press as: Buchborn T, et al. Tolerance to LSD 
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. Introduction

Serotonergic hallucinogens, such as lysergic acid diethylamide
LSD) or dimethoxy-bromoamphetamine (DOB) share structural
lements with serotonin (5-hydroxytryptamine [5-HT]) [1,2], a
eurotransmitter involved in mood (repetitive) gross motor output,
ascular tonus, and thermoregulation. Although their structural
esemblance to 5-HT renders most hallucinogens prone to bind to
iverse 5-HT receptors [3], activation of the 5-HT2A subtype is con-
idered the key mechanism for their human psychedelic effect to
ccur [4,5]. In animals, hallucinogens evoke a variety of stereotype-
ike motor outputs, including head twitches, wet dog shakes, ear
cratches, limb flicking, or backward walking [6]. As head twitches
n mice and wet dog shakes in rats have a very similar pharmacology,

ith the latter most probably reflecting a more generalised ver-
ion of the former [7,8], we consider both phenomena analogous,
nd subsume them under the term shaking behaviour [compare 9,
0]. Shaking behaviour is one of the most widely accepted and
ell-scrutinised model of central hallucinogenic activity [11,12].

t mirrors the human psychedelic effect in its three most impor-
ant characteristics: It is primarily related to the activation of
-HT2A receptors [13,14]; it is induced by representatives of the two
ain groups of serotonergic hallucinogens, the indole- and pheny-

alkylamines [15–17]; and it rapidly develops tolerance [18,19].
iven its significance for the basic understanding of the human
sychedelic effect, the neurophysiological correlates of the hallu-
inogen induced shaking behaviour are of high interest. In parallel
o human research [20,21], and for the following main reasons, the
urrent literature largely focuses on the frontal cortex as a primary
orrelate: (1) The (frontal) cortex is the region of the brain, where
-HT2A receptors are most abundantly expressed, notably on cor-
ical output cells (i.e. layer V pyramidal cells) [22,23]. (2) When
ocally applied into the frontal cortex, hallucinogens evoke shak-
ng behaviour sensitive to systemic 5-HT2A antagonist application
24]. (3) In 5-HT2A knock-out mice, shaking behaviour can be res-
ued with the expression of 5-HT2A receptors selectively restored
o the cortex [16]. Based on the electrophysiological properties
f the frontocortical 5-HT2A receptors, shaking behaviour most
robably engages a glutamatergic mechanism [25]. In slice prepa-
ations of frontocortical layer V pyramidal cells, 5-HT2A receptors
ncrease the frequency of spontaneous excitatory postsynaptic
urrents/potentials (EPSCs/EPSPs) [26]. As this increase can be
ounteracted by AMPA receptor blockage or by metabotropic glu-
amate receptor type 2/3 (mGlu2/3) activation, it is assumed to be
ccounted for by a 5-HT2A related glutamate release onto AMPA
eceptors [27,28]; mGlu2/3 receptors, in this model, interfere presy-
aptically with the glutamate release [27] and/or (postsynaptically)
ith the 5-HT2A signalling [29]. Intriguingly, shaking behaviour has

ikewise been shown to be sensitive to pharmacological AMPA and
Glu2/3 receptor manipulations. Similar to the EPSCs/EPSPs in the

yramidal cells, it can be inhibited by AMPA antagonists [28,30]
nd mGlu2/3 agonists [29,31], but enhanced by mGlu2/3 antagonists
32].

In the current work, we address the tolerance phenomenon
haracteristic for repeated hallucinogen application [for a review
ee 5, 33, 34]. Tolerance to hallucinogen induced shaking behaviour
as often been associated with a downregulation of frontocortical
-HT2(A) receptors [35–39]. However, mathematical correlations
or this receptor-behaviour association, apart from one study on
ntagonist related upregulation of both parameters [40], have not
een presented. Also, concomittant adaptations of the (down-
tream) glutamatergic system are largely obscure. Thus, assuming
Please cite this article in press as: Buchborn T, et al. Tolerance to LSD
frontocortical 5-HT2A and glutamate receptor binding sites. Behav Bra

 as indicated by the above listed evidence – that shaking behaviour
rimarily relates to mGlu2/3-sensitive glutamate release down-
tream of frontocortical 5-HT2A activity, we here investigate
hether behavioural tolerance to LSD and DOB co-occurs with
 PRESS
 Research xxx (2014) xxx–xxx

adaptations of 5-HT2 and mGlu2/3 signalling, or of 5-HT2A and/or
overall-glutamate binding sites of the frontal cortex. To charac-
terise the relationship between neurochemistry and behaviour
more closely, we  in addition probe the results by correlation anal-
ysis.

2. Methods and materials

2.1. Animals and housing

For all experiments, male Sprague Dawley rats (MolTac: SD,
Taconic Denmark) (av. 10 weeks, av. 380 g) were used. They were
housed in groups of five animals per cage, and held under con-
trolled laboratory conditions (temperature 20 ± 2 ◦C, air humidity
55–60%, light/dark cycle 12:12 [light on at 6 a.m.]) with standard
food pellets (ssniff SM/R/NH, 10 mm;  ssniff Spezialdiäten GmbH,
Soest, Germany) and tap water ad libitum. All experiments per-
formed comply with the regulations of the National Act on the
Use of Experimental Animals (Germany), as approved by the Tier-
schutzkommission Sachsen-Anhalt.

2.2. Behavioural experiments

2.2.1. Treatment
LSD tartrate, DOB hydrochloride (both from THC Pharm, Frank-

furt am Main, Germany), and ketanserin tartrate (Biozol, Eching,
Germany) were dissolved in isotonic saline, and applied into the
peritoneum (i.p.) (10 ml/kg). Adequate dosing was determined by
dose–response curves (LSD and DOB), or extrapolated from litera-
ture (ketanserin: 0.5 or 1.0 mg/kg, 30 min before agonist) [e.g. 17].
For tolerance experiments, both hallucinogens were applied seven
times over four consecutive days. Every morning before obser-
vation (at ∼10 a.m.), a low dose was given (0.025 mg/kg LSD vs.
0.25 mg/kg DOB); in the evening of days 1–3 (at ∼10 p.m.), an addi-
tional high dose (0.25 mg/kg LSD vs. 0.75 mg/kg DOB) followed.
Control animals were treated alike but received pure saline.

To estimate whether psychological habituation to the experi-
mental setting might contribute to tolerance development, a fourth
group of rats experienced a four days habituation phase before
the above mentioned LSD treatment began. In this phase, the rats
received daily saline injections, were put into the experimental
cages, and observed as if they were in the actual LSD experiment.

2.2.2. Shaking behaviour
Shaking behaviour was defined as brisk rotational movement

of the head (with or without propagation to shoulders and trunk
[wet dog shakes vs. head twitches]) around the long axis of the
rat’s body. For 30 min, starting right after agonist application, the
occurrence of shaking behaviour was  continuously registered by a
trained observer, and validated via digital camera recordings. For
dose–response curve experiments, rats were observed individu-
ally, i.e. one animal per cage (acryl cylinder: 19 cm Ø, 23 cm H). For
antagonist and tolerance experiments, rats were observed in larger
Plexiglas cages (36 cm L × 38 cm H × 20 cm W),  with groups of 2–3
animals per cage. To avoid grooming related shaking behaviour,
no sawdust bedding was  provided. For general habituation, all ani-
mals were repeatedly exposed to the experimenter, and put into
the room of experimentation a few days beforehand.

2.3. Neurochemical experiments

2.3.1. 5-HT2A and glutamate receptor binding
 and DOB induced shaking behaviour: Differential adaptations of
in Res (2014), http://dx.doi.org/10.1016/j.bbr.2014.12.014

Twenty hours after the last treatment, rats were decapitated and
frontal cortices were dissected. With slight modifications, recep-
tor binding assays were performed as earlier described [41,42].
Tissue was  homogenised, pelleted by centrifugation (10 min,
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rated from their littermates (Fig. 1), all subsequent observations
were performed with groups of 2–3 animals per cage. As shown
in Fig. 2A, shaking behaviour evoked by LSD (0.025 mg/kg, i.p.)
and DOB (0.25 mg/kg, i.p.) significantly increases when familiar

Fig. 2. (A) LSD (0.025 mg/kg, i.p.) and DOB (0.25 mg/kg, i.p.) induced shaking
behaviour, as observed individually (single rat per cage) or in groups (2–3 rats per
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ig. 1. Dose–response curves for LSD (left) and DOB (right) induced shaking behavi
SD  is more potent than DOB but less efficient. Mean + SEM. Comparison to control 

0,000 × g, 4 ◦C), and resuspended in assay buffer (5-HT2A: 50 mM
ris–HCl with 120 mM NaCl, 5 mM KCl, 2.5 mM CaCl2, 1 mM
gCl2, pH 8.0; glutamate: 50 mM Tris–HCI with CaCl2, pH 7.4).

liquots containing 175–200 �g protein were incubated at 37 ◦C
ith either [3H]spiroperidol (0.25 nM,  30 min) (specific activ-

ty: 800 GBq/mM [Perkin-Elmer, MA,  USA]), or [3H]glutamate
50 nM,  40 min) (specific activity: 1.43 Tbq/mM [Perkin-Elmer,

assachusetts, USA]). d-Butaclamol (50 nM)  was  used as a mask
o prevent [3H]spiroperidol binding to D2 receptors. The mem-
rane fraction was collected on GF/A glass-fibre filters, washed with
uffer, and a taken for liquid scintillation counting in a toluene-
ontaining solvent. Specific binding was calculated by subtracting
on-specific binding (radioligand in presence of different concen-
rations [1 nM to 100 �M range] of unlabelled DOB [5-HT2A] and
lutamate, respectively) from total binding (obtained with radioli-
and alone), and expressed as relative potencies (fold change over
ontrol).

.3.2. 5-HT2 and mGlu2/3 receptor induced [35S]GTP-gamma-S
inding

For measurement of 5-HT2 and mGlu2/3 coupling to G-proteins
modified from 41, 43], crude synaptic membrane pellets were
esuspended in assay buffer (50 mM Tris-HCl, 3 mM MgCl2, 0.2 mM
GTA, 100 mM NaCl, pH 7.4). Aliquots containing 15–20 �g protein
ere incubated with 3 �M GDP and 0.05 nM [35S]GTP-gamma-S

specific activity: 46.3 TBq/mM [Perkin-Elmer, MA,  USA]) in the
resence and absence of DOB or LY354740 (10 �M)  (THC Pharm,
rankfurt am Main, resp. Biozol, Eching, Germany). Incubation was
erminated by rapid filtration, filters were rinsed in washing buffer
50 mM Tris–HCl, 3 mM MgCl2, 1 mM EGTA, pH 7.4), and taken for
iquid scintillation counting of bound radioactivity. Total [35S]GTP-
amma-S binding was corrected for unspecific binding (in presence
f 10 �M unlabelled GTP-gamma-S), and expressed as Emax of ago-
ist stimulation (fold change over control).

All determinations were performed at least in duplicate.

.4. Statistical analysis

A two-factor ANOVA with repeated measures on one factor
mixed model) was conducted to assess main effects and interac-
ion of day (the repeated measure factor) and treatment in tolerance
evelopment, and followed by pairwise contrast analysis. The
ata from the dose–response, individual vs. group, antagonist, and
eurochemical experiments were analysed using nonparametric
ruskal–Wallis test with Dunn’s multiple post hoc comparisons,
Please cite this article in press as: Buchborn T, et al. Tolerance to LSD 

frontocortical 5-HT2A and glutamate receptor binding sites. Behav Bra

r Mann–Whitney U-testing (as a priori planned). Relationships
etween behavioural and binding parameters were probed by
roduct-moment correlations. Calculations were carried out by
PSS and GraphPad Prism software. Statistical significance was
 SD rats (as observed separated from one another [one animal per cage]). Note that
, * p < .05, ** p < .01.

assumed if the null hypothesis could be rejected at .05 probability
level.

3. Results

3.1. Behavioural experiments

3.1.1. Dose–response curves for LSD and DOB induced shaking
behaviour

In SD rats (observed separated from each other), both seroto-
nergic hallucinogens, LSD (0.025 mg/kg, i.p.) and DOB (0.25 and
0.5 mg/kg, i.p.) induce significant shaking behaviour (Fig. 1). LSD
is about 10 times more potent than DOB, however, its maximal
effect is much lower (mean ± SEM in 30 min: 3.69 ± 0.76 [0.025
LSD]; 10.71 ± 1.47 [0.25 DOB] and 10.09 ± 2.64 [0.5 DOB]) (Dunn’s
multiple comparison, p < .05, .01 and .01, respectively) (Fig. 1).
Dose–response curves appear inversely U-shaped; at higher doses,
flat body posture and/or backward walking increasingly displace
shaking behaviour.

3.1.2. Effect of littermate presence on LSD and DOB induced
shaking behaviour

Given that rats hardly respond to LSD when observed sepa-
and DOB induced shaking behaviour: Differential adaptations of
in Res (2014), http://dx.doi.org/10.1016/j.bbr.2014.12.014

cage). Note that SD rats more reliably respond to serotonergic hallucinogens when
littermates are around (n = 7–8). (B) Composition of LSD and DOB induced shaking
behaviour (as observed in groups). Note that wet dog shakes (WDS) prevail for LSD,
and head twitches (HT) for DOB (n = 6–8). Mean + SEM. Comparison to individual
condition, ## p < .01, (NS) p < .10 (trend) (A); comparison WDS  vs. HT, # p < .05 (B).

dx.doi.org/10.1016/j.bbr.2014.12.014


ARTICLE IN PRESSG Model
BBR 9304 1–7

4 T. Buchborn et al. / Behavioural Brain Research xxx (2014) xxx–xxx

Fig. 3. Effect of the 5-HT2A antagonist ketanserin (Kts) (0.5 or 1.0 mg/kg, i.p., 30-
min  pretreatment) on spontaneous, LSD (0.025 mg/kg, i.p.) (left) and DOB (0.25 or
0.5  mg/kg, i.p.) (right) induced shaking behaviour in SD rats (as observed in groups
of  2–3 animals per cage) (n = 6–7). Note that ketanserin (+Kts) completely blocks
t
(

l
a
p
m

3
a

d
h
p
b
a
L
u

3
b

t
p

1
o
F
d
2
t
v
i
d
t
(

3

3
f

r
o
[
t
[
b

Fig. 4. Tolerance to LSD (grey circle) and DOB (black triangle) induced shaking
behaviour in SD rats (as observed in groups of 2–3 animals per cage), with a total of
seven applications over four consecutive days. Note that tolerance to LSD is hardly
affected by a four days habituation to daily (saline) injections and observations
(LSD-H) (half-filled light-grey circle, dotted line). Mean ± SEM. Repeated measures
ANOVA, contrast to control (Cntr) (unfilled square), ** p < .01.

Fig. 5. Effect of repeated LSD and DOB treatment (7× in 4 ds, i.p.) on DOB-sensitive
[3H]spiroperidol (left) and glutamate-sensitive [3H]glutamate binding (right) to
crude membranes of the frontal cortex of SD rats (n = 5–6). Note that LSD reduces
glutamate binding significantly, but 5-HT2A binding as a trend only; for DOB treated
animals, 5-HT but not glutamate binding is significantly reduced (specific binding,

decrease in DOB induced [ S]GTP-gamma-S binding to frontocor-
tical membranes (u = 4, p = .02 [DOB]; u = 10, p = .34 [LSD]) (Fig. 6).
The LY354740 induced [35S]GTP-gamma-S binding, on the other

Fig. 6. Effect of repeated LSD and DOB treatment (7× in 4 d, i.p.) on DOB (left) and
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he shaking behaviour by both hallucinogens. Mean + SEM. Comparison to agonist
without Kts pretreatment), ## p < .01.

ittermates are present (group), as compared to rats observed sep-
rated from each other (individual) (u = 0.0, p < .01 [LSD]; u = 2.5,

 < .01 [DOB]). As a trend, the same holds true for the control ani-
als (u = 14, p = .057).

.1.3. Composition of LSD and DOB induced shaking behaviour
nd effect of ketanserin

Shaking behaviour comprises head twitches (HT) and wet
og shakes (WDS). LSD induces more wet dog shakes than
ead twitches (u = 5.5, p = .026), for DOB it is reverse (u = 9.5,

 = .028) (Fig. 2B). Ketanserin (Kts) (0.5 or 1.0 mg/kg, i.p., 30 min
efore agonist), a selective 5-HT2A antagonist, blocks the over-
ll shaking behaviour of both hallucinogens (u = 0.0, p < .01 [0.025
SD ± 1.0 Kts], [0.025 LSD ± 0.5 Kts], and [0.25 DOB ± 0.5 Kts];

 = 3.5, p < .01 [0.5 DOB ± 1.0 Kts]) (Fig. 3).

.1.4. Effect of repeated LSD and DOB application on shaking
ehaviour

The omnibus F-test revealed significant main effects for both fac-
ors, day (F[2.54, 109.39] = 77.99, p < .01) and treatment (F[3,43] = 31.38,

 < .01), and a significant day × treatment interaction (F[7.63,
09.39] = 13.45, p < .01). Results were further probed by a pri-
ri specified contrasts for groups of interest. As depicted in
ig. 4, the LSD and DOB induced shaking behaviour significantly
ecreases over time (from 16.07 ± 1.31 to 5.33 ± 0.64 [LSD], and
2.64 ± 1.66 to 6.45 ± 0.76 [DOB] [mean ± SEM]), whereas the con-
rol behaviour remains constant (F[1,26] = 74.25, p < .01 [control
s. LSD]; F[1,22] = 63.92, p < .01 [DOB vs. control]). The decrease
n responsiveness to LSD is not significantly altered by a four
ays habituation to injection and observation (from 15.13 ± 2.34
o 6.13 ± 1.08 [LSD-H]) (F[1,21] = 1.59, p = .22 [LSD vs. LSD-H])
F[1,19] = 21.94, p < .01 [control vs. LSD-H]).

.2. Neurochemical experiments

.2.1. Effect of repeated LSD and DOB application on
rontocortical 5-HT2A and glutamate receptor binding sites

As shown in Fig. 5, repeated DOB treatment significantly
educes DOB-sensitive [3H]spiroperidol binding to membranes
f the frontal cortex (u = 5.5, p = .02), with glutamate-sensitive

3H]glutamate binding being unaffected (u = 12, p = .19). In con-
Please cite this article in press as: Buchborn T, et al. Tolerance to LSD
frontocortical 5-HT2A and glutamate receptor binding sites. Behav Bra

rast, repeated LSD treatment significantly reduces frontocortical
3H]glutamate binding (u = 4, p = .02), with [3H]spiroperidol binding
eing decreased as a trend only (u = 9, p = .08).
2A

fold  change over control). Mean + SEM. Comparison to control (Cntr), * p < .05, (NS)
p  < .10 (trend).

3.2.2. Effect of repeated LSD and DOB application on
frontocortical 5-HT2 and mGlu2/3 receptor signalling

After repeated DOB, but not LSD treatment, there is a significant
35
 and DOB induced shaking behaviour: Differential adaptations of
in Res (2014), http://dx.doi.org/10.1016/j.bbr.2014.12.014

LY354740 (right) induced [35S]GTP-gamma-S binding to crude membranes of the
frontal cortex of SD rats (n = 4–6). Note that signalling of mGlu2/3 receptors is reduced
by  both hallucinogens, 5-HT2 signalling only by DOB (specific binding, fold change
over  control). Mean + SEM. Comparison to control (Cntr), * p < .05.

dx.doi.org/10.1016/j.bbr.2014.12.014


 ING Model
B

l Brain

h
a

3
a

b
s
r
s
i
i
a
n
g
w
p

4

b
w
w
i

t
a
1
t
i
o
5
i
t
w
p
f
i
i
t
a
G
n
j

o
d
[
f
a
p
s
o
d
i
c
e
a
m
t
s
h
m

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395
ARTICLEBR 9304 1–7

T. Buchborn et al. / Behavioura

and, is significantly reduced following both, DOB (u = 3, p = .01)
nd LSD (u = 5, p = .04) (Fig. 6).

.3. Relationship between the behavioural and neurochemical
daptations induced by repeated LSD and DOB application

For the DOB tolerant animals, both 5-HT2A and [3H]glutamate
inding highly correlates with the number of shaking behaviour
hown on the last day of repeated DOB treatment (r = .80, p = .049;

 = .84, p = .035). For the LSD tolerant animals, on the other hand,
uch a correlation can only be found for [3H]glutamate bind-
ng (r = .86, p = .03 [glutamate]; r = .41, p = .24 [5-HT2A]). LY354740
nduced [35S]GTP-gamma-S binding and shaking behaviour neg-
tively correlate for rats tolerant to DOB (r = −.98, p = .001) but
ot for rats tolerant to LSD (r = .30, p = .27). DOB induced [35S]GTP-
amma-S binding, as opposed, does not share significant variance
ith tolerance to either hallucinogen (r = −.25, p = .37 [DOB]; r = .55,

 = .22 [LSD]).

. Discussion

Referring to the idea that hallucinogen induced shaking
ehaviour engages frontocortical 5-HT2A-glutamate interaction,
e here investigate whether tolerance to LSD and DOB correlates
ith adaptations of the local 5-HT2A and/or overall-glutamate bind-

ng sites.
In line with published results for the SD strain [44,45], we  show

hat LSD and DOB significantly increase shaking behaviour in doses
round 0.025 and 0.25 mg/kg i.p., respectively (Fig. 1). LSD is about
0 times more potent than DOB, which matches their 5-HT2A affini-
ies [46] and human potencies [5]. That the frequency of the LSD
nduced shaking behaviour, as opposed, is much lower than the
ne seen with DOB, might be due to its lower intrinsic activity at
-HT2A [47] and/or counterregulation via 5-HT1A [48,49]. As the

ndividual caging seemed to intimidate the rats, often they were
ense and immobile during observation, all further experiments
ere performed with group, instead of individual, caging. In the
resence of familiar littermates, shaking behaviour – as unmasked
rom tension – more reliably occurs (Fig. 2A). Differentiating shak-
ng behaviour into its components, we show that LSD and DOB
nduce head twitches and wet dog shakes (Fig. 2B). That DOB prefers
he former and LSD the latter might reflect functional selectivity
t 5-HT2A [50] and/or modulations by non5-HT2A receptors [3].
iven that the 5-HT2A antagonist ketanserin blocks either compo-
ent (Fig. 3), however, subsuming both as shaking behaviour seems

ustified.
In humans, tolerance to the psychedelic effect of LSD – given

nce a day – occurs in as little as three days [33,34]. Although
escribed anecdotally only, similar might hold true for DOB, too
51]. In animals, tolerance to hallucinogens inconsistently mani-
ests varying across different behaviours, species, and regimens [for
n overview see 33, 34]. As to shaking behaviour in SD rats, a once-
er-day regimen is not sufficient for tolerance to manifest (data not
hown [see 34]) [compare for DOI 52]. Only with the application
f a second (high) dose each day, shaking behaviour significantly
ecreases (Fig. 4). In literature, tolerance to LSD induced shak-

ng behaviour has been described for cats and macaques and–as
hallenged by DOI or endogenous serotonin–for rabbits [34]. Tol-
rance to DOB induced shaking behaviour, although not specifically
ddressed in a paper before, partially occurred in the context of a
ultiple-weeks-application study on drug discrimination [53]. As
Please cite this article in press as: Buchborn T, et al. Tolerance to LSD 

frontocortical 5-HT2A and glutamate receptor binding sites. Behav Bra

o LSD induced (shaking) behaviour, pharmacokinetic adaptations
eem not contribute to tolerance development [54,55]; behavioural
abituation to the experimental setting, as indicated by our data,
ight also play a rather subordinate role (Fig. 4, LSD vs. LSD-H).
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Assuming tolerance to LSD (and DOB), instead, to be primarily
a pharmacodynamic phenomenon, our data from the radioligand
binding assay reveal important features. Repeated DOB applica-
tion – as measured by DOB-sensitive [3H]spiroperidol and DOB
induced [35S]GTP-gamma-S binding – leads to a significant reduc-
tion in frontocortical 5-HT2A binding sites [compare 56] and 5-HT2
signalling, respectively (Fig. 5 and 6). The reduction in 5-HT2A bind-
ing sites correlates well with tolerance to DOB  (r = .80); the reduced
5-HT2 signalling – possibly due to non5-HT2A receptors confound-
ing the high-concentration Emax – does not. Glutamate-sensitive
[3H]glutamate binding sites are not affected by DOB, yet their status
(in addition to the 5-HT2A reduction) appears to be implicated in
tolerance to the drug (r = .84). As to repeated LSD application, fron-
tocortical 5-HT2A binding sites are reduced as a trend, too (p < .1)
(Fig. 5); 5-HT2 signalling, however, is not affected (Fig. 6) and nei-
ther parameter correlates with tolerance to LSD. In contrast to its
little (and unsystematic) effect on 5-HT2(A) receptors, LSD unlike
DOB (and although it does not have any affinity for glutamate recep-
tors [3]) significantly reduces frontocortical [3H]glutamate binding
sites (Fig. 5); this reduction, in addition, shares variance with tol-
erance to the drug (r = .86) (Fig. 5). Assuming, as outlined in the
introduction, that shaking behaviour engages frontocortical gluta-
mate receptor activation secondary to 5-HT2A related glutamate
release, the differential receptor adaptations noted for DOB and
LSD, respectively, implicate that tolerance to serotonergic hallu-
cinogens can arise at either level. That is, if a hallucinogen (like LSD
in our study) for some reason fails to (down-)regulate 5-HT2A recep-
tors, glutamate receptors might instead adapt, and thus prevent
cortical overstimulation (brought on by unabated 5-HT2A related
glutamate release). Why  LSD in our study (unlike DOB) fails to
(down-)regulate frontocortical 5-HT2(A) parameters, whereas in
former studies it did not [34], is unclear. It might be suggested
that there are different temporal phases in tolerance development
that – depending on the structure of a hallucinogen, the dose, and
regimen – differentially involve (complementary) adaptations of
either 5-HT2A and/or (downstream) glutamate receptors. Future
research, evaluating the receptor status at multiple time points,
might provide further insight.

Seemingly in accordance with the above suggested implica-
tion of glutamatergic adaptations for tolerance development, LSD
and DOB (despite having no affinity [3]) also reduce frontocortical
mGlu2/3 signalling (Fig. 6) [compare for DOB 53]. The desensi-
tisation might be a homologous adaptation to the hallucinogen
induced excess in synaptic glutamate [57,58] and/or heterolo-
gously achieved by a direct interaction between 5-HT2A and mGlu2
signalling [29]. For DOB, the mGlu2/3 desensitisation is negatively
correlated with tolerance (r = −.98), which fits the fact that mGlu2
receptors primarily suppress DOB induced shaking behaviour [59].
For LSD, as opposed, although its shaking behaviour is likewise sen-
sitive to mGlu2 receptors [29], there is no such correlation. Taken at
face value, the given correlation coefficients suggest that mGlu2/3
desensitisation – despite at first sight in line with the idea that glu-
tamatergic adaptations play a role in hallucinogen tolerance – (in
the case of LSD) does not seem to further or (in the case of DOB) even
seems to counteract its development. Since our binding analysis did
not differentiate mGlu2 and mGlu3 signalling, and the correlation
coefficients accordingly cannot be disentangled as to the individual
subtypes, either, such an appreciation of the coefficients needs to
be regarded preliminary, though.

In toto, our data imply that tolerance to shaking behaviour,
as induced by repeated application of serotonergic hallucinogens,
might not always be a matter of mere 5-HT2A regulation, but could
and DOB induced shaking behaviour: Differential adaptations of
in Res (2014), http://dx.doi.org/10.1016/j.bbr.2014.12.014

also involve (complementary) adaptations of (downstream) gluta-
mate receptors. Future research, along these lines, might screen for
adaptations of AMPA or (NR2B-) NMDA receptors [60,61] and/or dif-
ferentiate mGlu2 and mGlu3 receptors. Also, with regard to the local
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estriction of our binding analysis, future research might screen for
-HT2A-glutamate adaptations outside the frontal cortex [mind 62,
3]. Given the high conservedness of shaking behaviour [64,65],
or instance, adaptations in more archaic areas such as the dien-
ephalon, the brain stem, or the spinal cord could be promising
andidates.
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